




A REAL-TIME ICONIC IMAGE PROCESSOR

ABSTRACT

Qonald Lumia, Michael 0. Shneier, Ernest W. Kent
Sensory Interactive Robotics Group

Building 220, Room B124
National Bureau of Standards

Gaithersburg, MD 20899

The Sensory -Interactive Robotics Group at the National Bureau of
Standards is producing PIPE, a pipelined image-processing engine,
for research in low-level machine vision. PIPE processes sequences
of images at field rates through a series of point and neighborhood
operations. It i s divided into a variable number of identical stages,
each of which performs an independent set of operations on the
image data stored in the stage. A stage control unit determines the
sequence of operations performed within a stage on each image.
This scqucnce is easily modified by a host computer during the
inter -field interval when all of the stage control units can be totally
rcconfigured.

Images flow through PIPE in several ways. In addition to t,hp (stan-
dard pipcline) "forward " pathway, where an output imago is sent
t o the next stage, an output image can also be sent to the same
stage via a "recursive " pathway and to the previous stage via a
"retrograde " pathway. As a result, PIPE can support relaxation
operations, tcmporal neighborhood operations, and other local
opcrations.

Several processing modes are available in PIPE in addition to the
usual "STMD " mode of pipelined processors. In an "MIMI)" mode,
one of several operations i s performed on a region of interest which
can he defined by the host device or by previous image operations,
PIPE also supports variable resolution pyramids where an image is
compressed or expanded as it passes between stages.

INTRODUCTION

PIPE was designed as a preprocessor for iconic (spatially indexed)
images. It is intended to serve as a "front-end" for the vision por-
tion of a multi -modal sensory processing system being developed
for real-time robot guidance applications at NBS. I t s role is to per-
form transformations on images to extract features similar to thase
in the primal sketch of Marr(1976). These features make intensity
changes and local geometric relations explicit in images, while
maintaining the spatial representation. In thk, PIPE differs from
many processors designed for imageprocessing. These other procw
sors are usually designed to perform both local and global image-
processing tasks, often in an interactive environment. Pipe, how-
ever, is intended to perform only local operations. Several goals

Commercial equipment is identified in this paper in order to ade-
quately describe the systems that were developed. In no case does
such identification imply recommendation by the National Bureau
of Standards, nor does it imply that this equipment was neceasarily
the best available for the purpase. This paper was prepared in
conjunction with the official duties of United States Government
employees, and i s not subject to IJnited States copyright.

U.S. Government Work. Not protected by
U.S. copyright.

873

influenced the design:

(1) Rcal -time processing of images at field rates.

(2) Provision for interactions between related images, such as
those arising from dynamic image scqucnccs or from stereos -
copic views.

(3) Ability to apply different algorithms to different image
rcgions in rcal time.

(I)Ability to guide processing by knowledgobascd commands
and "hypothcsis images" supplied by the host.

This paper introduces the reader to PIPE and ita capabilities. A
more dctailed discuwion of PIPE can be obtained in (Kent et. a/.,
1084).

0VER VIELV O F PIPE

PIPE was designed as a preprocessor for iconic images. Figure I
shows how PIPE fits into the NBS imageprocessing system. I t
acquires images from a variety of sources, such BS analog or digital
tclevision cameras, ranging dcvices, and conformal mapping arrays.
It processes sequences of images in real time, through a series of
local neighborhood and point operations and presents i t s output to
such dcvices as monitors, robot vision systems, iconic -tosymbolic
mapping devices and imageprocessing host computers. In essence,
PIPE performs local operations and presents the results to other
processors which can perform global operations.

PIPE features three, concurrent, intcracting, inrageflow pathways.
These interconnect a variable number of identical modular image
processing stages. These stages are sandwiched between special
purpose input and output boards which provide a clean interface
with devices outside PIPE. The three pathways are: the "forward "
pathway, which acts as a traditional pipelined image-processing
path; the "retrograde " pathway, which carries images in the oppo
site direction, i.e., from the output of a stage to the input of its
predecessor; and the "recursive " pathway, which carries an image
from the output of a stage back into the input of the same stage.
Figure 2 shows the connections of the processing stages, the three
image-flow pathways, and the stage control units which store the
sequence of operations for each stage.

Processing in PIPE involves point operations and neighborhood
operations on the image data stored in a stage. The point opera-
tions are performed i n look-up tables and in A L U s at various
points in PIPE. Each stage can perform two simultaneous and
independent arithmetic or Boolean neighborhood operations on the
data stored within the stage. The results from these operations can
be sent on any of the image-processing pathways previously
described. In an alternative mode, neighborhood operations may he
modified on a pixel-by-pixel basis using information stored in
another buffer to choose between several different algorithms.

PIPE allows the construction of multiresolution, "pyramid ",
sequences of images. Pyramids have been found useful in a large
number of imageprocessing applications (Shneier, 1983, Tanimoto,
1984). They have an added utility in a strictly local proccssor like
PIPE because they allow information from spatially distant regions



to be made local. The basic operations availablc in PIPE for con-
structing image pyramids are sampling and pixel doubling. Sam-
pling is uscd to reduce the resolution of an image, while doubling is
uscd to increase the size of an image. Multi -rcsolution processing in
pipe is discussed in greater detail in (Kent et. al., 1984).

The problcm of programming PIPE involves assigning the resources
of each stage a t each field time. The internal architecture of a
stage in PIPE i s shown in Figure 8. While accurate, this diagram
does not reflect the way in which PIPE is programmed. An alterna -
tive representation is shown in Figure 4. It is this schematic
rcprrsrntation of a st,age which will be used as a programming aid.
It has four distinct sections, which are connected by switching n e t
works. At t,he top of the figure there is an input section, and below
lhis are t w o image buffers. Next come the neighborhood operations,

followed by the output processing. The final switching network
routes the outputs to the wildcard busses and/or to the three oue
put paths. Each section is discussed below.

The three boxes acrom the top, from left t o right, represent func-
tions of onc argument (lookup tables) to be applied to the ”for-
ward”, ” recursive”, and ”backward” input pathways, respectively.
lJsing a lookup table in the input path permits both arithmetic
functions (e.g. square root, tangent, etc.) and Boolean operations
(cg. shift, nand, etc.) to be performed on the input data before it
is rombinrd. Whatever functional transformation i s employed dur-
ing a given cyrle wil l he shown in the appropriate box in the exam-
ple presented below. These functional transformations, which occur
simultaneously, lead to a single box representing a combining func-
tion to he applied during the cycle to the three input paths. This
function is performed by an ALU and can he any arithmetic or log-
ical combination of the three inputs.

In section 2 there is a crosspoint matrix for switching the inputs
between two image buffers labeled X and Y, each of which stores a
256 x 256 pixel image with 8 bits of resolution. There are three
posible inputs and two possible outputs. Two of the inputs arise
from the wildcard busses (marked VnlJSA and VHUSB), while the
third is the output from the combining function. Any of the inputs
can be stored in buffer X at the same time that the same or
another input is stored in buffer Y. The image buffers are
represented by the boxes immediately below the switch.

Relow the image buffers is another switch that selects which of the
buffers will serve a.3 the input to the neighborhood operators of sec-
tion 3. Only one image buffer can he used as the source for the
neighborhood operators. Notice that the output from either image
butler can he routed both to the neighborhood operator and to
points further down in the stage (bypassing the neighborhood
operator). The terminals in the switching networks in these casev
are marked appropriately, although the lines connecting them to
their sources are not shown. Thus, for example, the output of the X
image buffer may be used unchanged at all points marked X.
The buffer selected for neighborhood processing passes first through
a lookup table (in the center of the figure) and then through both
the neighborhood operators (NOPI and NOP2). The outputs from
these operators are marked as I and 2, respectively. The ncighbor -
hood opcrators may be arithmetic or Boolean functions and are
completely independent. At present, the neighborhood size is 3 x 3
pixels and the result of each neighborhood operation is completed
within 200 ns in ordcr to keep up with the field rate of the input
dcvice.

A ”region of interest” operator allows each stage to switch between
the normal (NOPI, NOP2) operation set and alternative (NOPI’,
NOP2’) operation sets on a pixel -by-pixel basis. In this mode, the
other image buffer of the stage contains a map of the operations to
bc performed on homologous pixels of the image buffer undergoing
operations. Potentially, up to 256 different alternative operation
sets could be specified by the eight bit contents of each pixel in the
map. In practice, the number of alternative operation sets selecb
able during a field processing time is limited by the amount of
mcmory available within the stage to store them, which may be

enlarged at will. The operation sets stored in the available memory
may be changed arbitrarily between fields. This allows earlier
image operations, such as edge detection, to guide later processing.

Following the neighborhood processing, another switching matrix
sclects the inputs to two functions of two arguments. Any of the
outputs from the neighborhood operators or the image buffers can
serve as inputs to the functions. The box on the left represents an
arithmetic operation, performed on a pixel -by-pixel basis using an
ALU. The box on the right represents a twelve -bit lookup table.
Thc input i s twelve bits selected from any two eight-hit inputs in a
manner chosen by the programmer. By choosing eight hits from
one argument and setting the remaining four bits to ”don’t care”
values in the table, a function of one input can he implemented.

The final output of the stage is selected from the contents of the X
and Y buffers, from the outputs of both neighborhood operations,
and from the results of both functions of two arguments. The out-
puts can be routed to the two wildcard huffers, shown on the right
of the figure, and to the ”backward”, ”recursive”, and ”forward”
data paths from the stage, shown le f t to right at the bottom of the
figure. The only restriction i s that two different data streams can-
not he routed to the same output path.

Throughout the programming example presented below, a blank
box wil l represent an inactive operation. A simple pass-through
operation wil l he denoted by the unity function, U. In practice
many functions shown in these examplcs as unitary or elementary
functions will he modified to provide rounding or scaling operations
as required for optimal computation accuracy. Since the Functions
are derived from table lookup, these incidental computations nlay
be inserted automatically from a compiler library, and remain tran-
sparent t o the user.

A backward -chaining production system is being uscd to program
PIPE a t the high level. This program, written in PROLOG, is
given a description of the desired algorithm as an AND/OR graph.
It thcn asccrtains whirh operations must occur in the specific sec-
tions of a stage in ordcr to satisfy the constraints in~posedby the
algorilhm. In classic production system form, it tries a solution and
if it fails, it backtracks and tries another way. Preliminary rcsults
indicate that a Sobel edge operator solution can he generated on a
VAX 11/780 at the rate of one per second. (Clearly, there arolu-
tions.) Once th is high level assignment i s made, a simulator, also
under construction, wi l l be useful in debugging the program. Since
the asignments of stage resources has a one-bone correspondence
w i t h the microcode that i s stored in the stage control units, the
PROI,OG program can be easily assembled into the code required
to run PIPE.

PROGRAMMING PIPE -- THE SOBEL OPERATOR

PIPE can be used for any imagoprocessing task which can be pcr-
formcd using a 3 x 3 neighborhood convolution window. An exam-
ple of such an algorithm is the Sobel edge operator which calcu-
lates an approximation of the gradient G(r,c) and i t s associated
direction &(r, e ) for each row(r) and column(c) pixel in the image.
Formally,

Il(r,c )= I ( r ,e )*GI

I,(r ,e )=I(r ,e )*C 2

c (r ,c ) = d m
&(r,e )=tan-’( [*,Il)

and l denotes the con-

volution operator.
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The program is shown in Figure 5 using the stage schematic
described above. In order to illustrate how new images are insertcd
into PIPE, the above notation needs to be modified slightly. T h e
first input image will be labeled I,and the next input image wil l
be denoted ayI,.All of the intcrmediate images requircd for the
algorithm wil l carry an extra subscript indicating the source image.
This is important because the second input image can be inserted
iuto PIPE before the first image has been fully processcd.

In the first row, the first input imageI,enters the Y image buffer
of stage 1. The neighborhood operator C, is performed for every
neighborhood inIp and the result,I,I, is passed to stage 2 through
the "forward " pathway where it is stored in the X buffer. Since
there is no specification for the Y buffer of stage 1, the input image
rcmains unchanged i n that buffer.

The second row calculates the convolution of the original image
with the C 2 operator. The result of this operator, Z,,, i s passcd to
stage 2 through the "forward " pathway where it is stored in the Y
buffer. It i s also sent through the "recursive " pathway or stage 1
and is storcd in the Y buffer. This overwrites Z, but this i s no loss
because the input image is no longer needed.

In tho third row, the angle of the gradient is calculated using the
function of two variablcs lookup table sct up for tan-'(12,Zl). This
angle is sent out the "forward " path. Simultaneously, theI,buficr
is sent out the "rccursive " pathway.

The fourth row uses the input lookup tables to square the inputs
from t h e "forward " and "rccursive " inputs. These inputs are then
added in the hl,U and stored in the Y buffer. Af te r the square root
of this quantity i s taken in the final lookup table, the estimate of
the gradient C, i s available. Simultaneously, the next input image
I,overwrites the Y buffer of stage 1 and the pipclined process con-
tinues on the next image.

For the first image, four cycles are needed. However, for all subse-
quent images, only three cycles are required because the first cycle

of the current image is processed simultaneously with the fourth
cycle of the previous image.

There may be some question concerning the host computer's ability
to accept output images at the rate shown in this example (roughly
200 ns per pixel). For this example, there i s no problcm because the
Sobcl operator would probably be used as a preprocessing step for
further processing in PIPE. I f this were not the ease, then the
result could be sent to the host through the DMA channcl a t a
suitably lower rate.

It is interesting to compare the processing capabilities of PIPE with
the seqnential techniques usrd in von Neumann computer architec -
tures. To perform the Sobel opcrator for an n x m pixcl image
requires 19nm additions, 18nm multiplications, and 3nm lookups.
Assuming that earh operation takes the same amount of t ime and
that caeh image has the RS170 standard of 256 x 240 pixels, the
total number of operations is 40nm = 2.46 Mops. For PIPE, the
amount of time required (after the initial image) is three field
times, i.e. .05 seconds. Consequently, a von Neumann t y p com-
puter must operate at 49.2 Mops/second to keep up with PIPE in
this application.

RELA TED WORK

I'IJMPS (Brigs e t al., 1982) i s an example of a multi-user system
in which various task processing units are allocated from a pool.
Each processor i s specialized for a particular purpose, and images
are transformed by passing them through a sequence of different
processors. PIPE, on the other hand, consists of a sequence of
identical stages, each of which has the power to perform several
different operations on images. The programmer has the responsi -
bility of specifying the task of each stage to ensure that the desired
goal i s attained. PIPE is also dedirated to a single user, although
pipelines are easily constructed from a set of identical components,
allowing each user to have a specially tailored PIPE system. In
fact, a set of PIPE processors could be added t o the pool of avail -

able processors in PIJMI'S, and used as a rcsonrce in the samc way
a7 thc other processors.

Scvcral other systcms have components that perform some of the
functions of PIPE. Usually, however, they opcrate on a single
image at a time. For instance, the PICAP I1 system (Antonsson, e t
ai., 1982) ha3 a filter processor, FIP, that pcrfornls some of the
opcrations of a stage in PIPE. It also has other processors that are
spcrialized for operations such as image segmentation. FLIP
(1,uetjen e l al., 1980) is similar to PIPE in that i t has a number of
identical processors, but iL usually uses these processors in parallel
on subimages of the same image instead of on successive versions of
complctc images. FLIP also allows grcater flcxibility in the connec-
tions between its processors. In PII'E, processors arc normally con-
ncctcd only to their imnlediatc predcccssors and succcssors,
although the wildcard busses allow sclcctive but limitcd conncc -
tions hctwccn arbitrary stages. FLIP, on the other hand, provides
connections bctwccn all processors, allowing the processors to bc
arranged to suit each particular task.

Other special processors for image-processing include the massively
parallel processor, MPP (Potter, 1983), and ZMOB (Kushner e t al.,
1982), which is a more general parallel proccssor hut has been stu-
died extensively wi th rcgard to i ts abilities to perform image-
processing tasks. MPP has 16K processors, and is a true parallel
processor. Experience with the processor is limited, but a major
difficulty a.ppears to be bhe problem of transferring the data to
each individual processor, and getting the rcsults out of the
machine. MPP does not have a true neighborhood operator,
although each processor can be connected to four of i ts ncighbors
and use the pixel values there to compute i t s rcnult. It i s not clear
that MPP hns any advantage over pipclincd systems, because
images are usually obtained from an imaging system or storage
medium in a stream, and sent to successive processors in the same
fashion.

ZMOH consists of 256 processors connected by a ring-shapcd high
spred rornmunications system. The communications link operates
fast enough to make rach proccssor appear to be ronnected to all
ot,hrrs. Each processor i s a general -purpose cight bit microcom -
pu te r , with 64K bytes of memory. Thus, many diffrrent computa -
tions can be performed at the same time, either on the same or
diffcrrnt data. For image -processing applications, images are
usually broken into parts, each of which is sent to a diRerent pro-
cessor. Many operations require interactions between the parts,
especially when neighborhood operations are performed. This gives
rise to the need for communications between processors. Given that
the communications link is much faster than the processors' cycle
time, there is very l i t t le overhead involved. But upgrading the pro-
ccssors might cause data transmissions to become significant. While
PIPE is clearly less powerful than ZMOB, it is better snitcd to ita
role of low-level image processing.

A recent survey by Reeves (1984) divides image-processing tasks
into two classes. Low level image-processing usually modifies parts
of images, but maintains the image array. Higher levcl processing,
however, works on symbolic representations of the contentv of
images. Low level processing has usually given rise to architectures
bascd on single instruction stream, multiple data stream (SLMD)
structures. The higher level functions are usually carried out using
processors based on multiple instruction stream, multiple data
stream (MIMD) structures. The design of PIPE allows it to act as a
SIMI) pipeline, or as a (restricted) MIMD pipeline. The MND
mode is entered whenever the region -of-interest operators are used.

Cellular architectures have been used in several systems: CLIP4
(Duff, 19763, systolic arrays (Kung, 1982), and the cytocomputer
(Sternberg, 1979). These architectures operate on images using
simple, logiral operations. As a result of this simplicity, many pro-
cesors can be integrated onto a single chip,

In CIJP4, a processor is placed at each pixcl location of the image.
Currently, a 96 x 96 array of processors has been implemented. I t
performs ncighborhood operations with the 8 neighbors of a pixel
as well as point operations on the pixel itself. The output of each
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procrssor can be stored in the processor, when i t i s a partial result,
or it can lx propagated to any of i t s ncighhors. While CLIP4 can
process 96 x 96 pixcls in parallel, processing larger images wonld
appear to inrur large 1/0 delays. I'II'E, with i ts pipelined struc -
ture, can pcrform the functions of CLIP4 as well BS many others
because i ts rirher interconnection network permits both spatial and
temporal pixcl combinations. Furthermore, since the image i s usu-
ally obtained from a camera, it is difficult to take advantage of the
parallel nature of CIJP4.

Systolic arrays (Kung, 1982) balance computation speed with 1/0
limitations by interconnecting a set of cells, each capable of some
simple operations, in a regular pattern. The salient characteristic of
systolic arrays is that input data w well as (partial) result data
flow through the system. In pipelined systems, such as PIPE, only
rcsults flow. In spite of this difference, the architectures have a
great deal in common. Systolic arrays are built from generic build-
ing blocks for specific applications. In a similar fashion, the number
of stages in PIIT is application dependent. Also, systolic arrays
and PIPE share the concept of having very regular interconnection
structures. In PIPE, however, the "wildcard " buffers offer greater
interconnection flexibility.

A proccssor that has many features in common with PIPE is the
rytoromputcr (Sternberg, 1979). This machine performs neighbor -
hood and table-lookup operations, but lacks most of the other
fcatures of PIPE. It docs not have the "retrograde " or "rccurstve "

data paths, has no region -of-interest operators, and cannot pcrform
multi -resolution image-processing. Neither can it combine more
than one image in an operation. Even without these features, how-
ever, the cytncomputcr haa shown itself to he extremely useful for
low lcvcl image processing.

CONCLUSIONS

This paper has describcd a new image preprocessor, consisting of a
sequence of identical stages, each of which can perform a number
of point and neighborhood operations independently. An importanl
feature of the processor is the provision of forward, "recursive ",
and "backward " paths to allow image data to participate in tcm-
poral as well as spatial neighborhood operations. The "backward "
pathway also allows expectations or image models to be inserted
into the system by the host. These expectations can then partici -
pate in the processing in the same way as images acquired from the
input device. The region-of-interest operator is also a powerful, and
unique, feature of PIPE, allowing the results of featureextraction
processes to guide further image analysis. PIPE also provides a
multi -resolution capability, enabling global events to be made
local. This is important in a machine that has only local operators.
Much research needs to be done to explore the capabilities of the
system, but early experiments indicate that the system will have a
wide range of applications in low-level real-time image-processing.
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